Časové odezvy systémů se dvěma póly

Pro výše popsaný přenos lze najít pomocí zpětné Laplaceovy transformace výraz pro impulzní charakteristiku,

> pt:=invlaplace(P, p, t);

což je zřejmé, uvědomíme-li si, že lze zmíněný přenos přepsat do tvaru sočtu částečných zlomků.

> P=convert(P,parfrac,p);

[Maple Math]

[Maple Math]

Pro obecně zadané komlexně sdružené póly přenosu ( [Maple Math] , [Maple Math] ), lze potom impulzní charakteristiku vyjádřit ve tvaru:

> ptt:=subs({p1=sigma[n]+I*omega[n],p2=sigma[n]-I*omega[n]},pt);
`Re(ptt)`=evalc(Re(ptt));`Im(ptt)`=evalc(Im(ptt));

[Maple Math]

[Maple Math]

[Maple Math]

Úpravou tvaru ptt (vyjádřením reálné části) jsme získali předpokládaný výsledek. Je zřejmé, že imaginární část reálného signálu (odezvy) musí být nulová.

Dříve než si ukážeme konkrétní průběh impulzní charakteristiky, zastavme se u daného výsledku impuzní charakteristiky Re(ptt) . Je vidět, že přítomnost komplexně sdružených pólů v přenosové funkci má za následek výskyt tlumené harmické složky ve výstupním signálu (přirozené odezvě). Kmitočet sinusové složky je roven přirozenému (vlastnímu) kmitočtu [Maple Math] ; [Maple Math] se nazývá absolutním činitelem tlumení . Jak je z vidět ze vztahu Re(ptt), musí být pro stabilní systém tento činitel záporný, resp. musí platit [Maple Math] .

Nyní roznásobíme výraz pro přenos a dosadíme za kořeny výrazy [Maple Math] , [Maple Math] .

> Pk:=K/expand(subs({p1=sigma[n]+I*omega[n],p2=sigma[n]-I*omega[n]},denom(P)));

[Maple Math]

Provedeme nové přiřazení, které jak dále ukážeme bude výhodné pro charakterizaci přenosů s koplexními póly .

> omega[0]^2=omega[n]^2+sigma[0]^2;
xi=abs(sigma[n])/omega[0];
Q=omega[0]/2/abs(sigma[n]);

Je patrné, že [Maple Math] vyjadřuje modul pólu (| p1 | = | p2 |). Tento kmitočet je vlastně zlomovým kmitočtem modulové charakteristiky stabilního systému, přičemž si musíme uvědomit, žě v případě koplexně združeného pólu zaávisí tvar kmitočtových charakteristik jak na [Maple Math] , tak na [Maple Math] nebo [Maple Math] (při dvojnásobném reálném pólu vykazuje modul přenosu pro [Maple Math] pokles o 6dB). Jelikož výše zmíněný absolutní činitel tlumení [Maple Math] není výhodné udávat, protože bychom jej museli udávat spolu s vlastním kmitočtem [Maple Math] , definujeme činitel [Maple Math] nebo častěji Q. Činitel [Maple Math] se pro stabilní systém ( [Maple Math] < 0) nazývá relatinní činitel tlumení a činitel Q činitel jakosti příslušející dané dvojici komlexně sdružených pólů. Vztah mezi zlomovým kmitočtem [Maple Math] a [Maple Math] je zřejný z následujících rovností, nebo názorněji z níže uvedených obrázků. Činitel jakosti Q navíc velmi názorně vystihuje průběh modulové charakteristiky, jak dále ukážeme. Při zlomovém kmitočtu může modulová charakteristika vykazovat jak překmit, tak pokles oproti "asymptotické" hodnotě, přičemž skutečná hodnota modulu přenosu při tomto kmitočtu je Q násobkem "asymptotické" hodnoty.

[Maple Math]

[Maple Math]

[Maple Math]

[Maple Metafile]

Předpokládejme kořeny v levé polorovině ( [Maple Math] ). Výraz pro přenos nyní můžeme přepsat do následujícího tvaru.

> Pkq:=subs({omega[n]^2=omega[0]^2-(omega[0]/2/Q)^2,sigma[n]=-omega[0]/2/Q},Pk);

[Maple Math]

Pro kořeny platí:

> sol:=solve(denom(Pkq),p);

[Maple Math]

Podle hodnoty činitele jakosti Q můžeme provést následující dělení (pro jednoduchost volíme pro všechny případy stejný kmitočet [Maple Math] = 1000, aniž bychom se dopustili jakéhokoliv omezení obecnosti).

1. Pro Q < 1/2 dostaneme dva různé reálné póly, pro něž má impulzní charakteristika následující tvar a průběh.

> `Q=1/10`;
p11:=evalc(subs({Q=1/10,omega[0]=1000},sol[1]));
p12:=evalc(subs({Q=1/10,omega[0]=1000},sol[2]));
Re_pt:=evalc(Re(subs({K=1000^2,p1=p11,p2=p12},pt)));
plot(subs({K=1000^2,p1=p11,p2=p12},pt),t=0..0.05,title=`Impulzní charakteristika`,labelfont=[HELVETICA,8],axesfont=[HELVETICA,8],thickness=3);

[Maple Math]

[Maple Math]

[Maple Math]

[Maple Math]

[Maple Plot]

2. Pro Q = 1/2 dostaneme dva stejné reálné póly (dvojnásobný pól), pro něž má impulzní charakteristika následující tvar a průběh. Pro tento případ však musíme nejprve přepočítat obecný vztah pro pt z upraveného vztahu pro přenos. Modulová charakteristika právě nebude vykazovat překmit a pokles chrakteristiky v bodě zlomu je 6 dB.

> P2:=K/(p-p1)^2;
pt2:=invlaplace(P2, p, t);
`Q=1/2`;
p11:=evalc(subs({Q=1/2,omega[0]=1000},sol[1]));
p12:=evalc(subs({Q=1/2,omega[0]=1000},sol[2]));
Re_pt:=evalc(Re(subs({K=1000^2,p1=p11},pt2)));
plot(subs({K=1000^2,p1=p11},pt2),t=0..0.05,title=`Impulzní charakteristika`,labelfont=[HELVETICA,8],axesfont=[HELVETICA,8],thickness=3);

[Maple Math]

[Maple Math]

[Maple Math]

[Maple Math]

[Maple Math]

[Maple Math]

[Maple Plot]

3. Pro Q > 1/2 dostaneme dva komplexně sdružené póly se zápornou reálnou částí, pro něž má impulzní charakteristika kmitavý, harmonický, tlumený průběh. Jak rychle se tato kmitavá odezva utlumí, záleží na velikosti činitele tlumení, resp. na hodnotě činitele jakosti Q . Je samozřejmé, že se při měnící hodnotě [Maple Math] , bude měnit i tvar příslušné modulové charakteristiky (při vzrůstajícím Q se bude zvětšovat i velikost "překmitu" na modulvé charakteristice). Zde je nutné ještě rozlišovat několik případů.

> [Maple Math] Tehdy je [Maple Math] > [Maple Math] a tlumení je tak velké, že se signál prakticky dříve utlumí, než dojde k periodickým kmitům (vzniká jeden až dva překmity). Na tomto příkladě je velmi dobře vidět důvod a výhody definice činitele jakosti, který udává "velikost tlumení" relativně k délce periodě vlastních kmitů, oproti absolutnímu činiteli tlumení, který je vztažen pouze k času t . Modulová charakteristika nebude ještě vykazovat překmit.

[Maple Math] Toto je zvláštní případ, kdy [Maple Math] = [Maple Math] . Impulzní charakteristika je sice méně tlumena než v předchozím případě. Tlumení je však stále velké, takže opět dojde jen k jednomu, dvěma 7překmitům. Modulová charakteristika ještě nebude vykazovat překmit a pokles chrakteristiky v bodě zlomu je 3dB. Jedná se o tzv. Maximálně plochou modulovou chrakteristiku .

[Maple Math] Tehdy je [Maple Math] a tlumení je již malé natolik, že je na impulzní charakteristice zřetelně vidět přítomnost harmonické složky. Modulová charakteristika bude vykazovat překmit, tak jak bylo ukázáno výše.

Nyní následují ukázky k jednotlivým bodům.

> `Q=0.6`;
p11:=evalc(subs({Q=0.6,omega[0]=1000},sol[1]));
p12:=evalc(subs({Q=0.6,omega[0]=1000},sol[2]));
Re_pt:=evalc(Re(subs({K=1000^2,p1=p11,p2=p12},pt)));
plot(subs({K=1000^2,p1=p11,p2=p12},pt),t=0..0.05,title=`Impulzní charakteristika`,labelfont=[HELVETICA,8],axesfont=[HELVETICA,8],thickness=3);

[Maple Math]

[Maple Math]

[Maple Math]

[Maple Math]

[Maple Plot]

> `Q=1/sqrt(2)`;
p11:=evalc(subs({Q=1/sqrt(2),omega[0]=1000},sol[1]));
p12:=evalc(subs({Q=1/sqrt(2),omega[0]=1000},sol[2]));
Re_pt:=evalc(Re(subs({K=1000^2,p1=p11,p2=p12},pt)));
plot(subs({K=1000^2,p1=p11,p2=p12},pt),t=0..0.05,title=`Impulzní charakteristika`,labelfont=[HELVETICA,8],axesfont=[HELVETICA,8],thickness=3);

[Maple Math]

[Maple Math]

[Maple Math]

[Maple Math]

[Maple Plot]

Pro tento případ ukážeme navíc odpovídající průběh modulové chrakteristiky přenosu - maximálně ploché.

> `Q=1/sqrt(2)`;
modul:=evalc(abs(subs({Q=1/sqrt(2),omega[0]=1000,K=1000000,p=I*omega},Pkq)));
pl:=semilogplot(20*log10(modul),omega=1..3000,thickness=3,title=`Maximálně plochá charakteristika`,labelfont=[HELVETICA,8],axesfont=[HELVETICA,8],thickness=3):
t1 := textplot([3.2,-1.5,`-3dB`],align=RIGHT):
t2 := textplot([3.15,-10,`-40dB/dec`],align=LEFT):
l:=line([0.1,-3],[1100,-3],color=black,linestyle=2):
v1:=arrow([3,0], [3,-3], .002, .1, .3, color=black):
v2:=arrow([3,-3], [3,0], .002, .1, .3, color=black):
display(pl,l,t1,v1,v2,t2);

[Maple Math]

[Maple Math]

[Maple Plot]

> `Q=5`;
p11:=evalc(subs({Q=5,omega[0]=1000},sol[1]));
p12:=evalc(subs({Q=5,omega[0]=1000},sol[2]));
Re_pt:=evalc(Re(subs({K=1000^2,p1=p11,p2=p12},pt)));
plot(subs({K=1000^2,p1=p11,p2=p12},pt),t=0..0.05,title=`Impulzní charakteristika`,labelfont=[HELVETICA,8],axesfont=[HELVETICA,8],thickness=3);

[Maple Math]

[Maple Math]

[Maple Math]

[Maple Math]

[Maple Plot]

Důkaz uvedených skutečností

Extrémním případem je případ ryze imaginárních kořenů, jak bylo ukázáno výše a v tomto dělení je to následující případ -- čtvrtý.

4. Pro Q = + Ą dostaneme dva komplexně sdružené, ryze imaginární póly (s nuvou reálnou částí), pro něž má impulzní charakteristika následující tvar a průběh.

> `Q`=infinity;
p11:=limit(evalc(subs(omega[0]=1000,sol[1])),Q=infinity);
p12:=limit(evalc(subs(omega[0]=1000,sol[2])),Q=infinity);
Re_pt:=evalc(Re(subs({K=1000^2,p1=p11,p2=p12},pt)));
plot(subs({K=1000^2,p1=p11,p2=p12},pt),t=0..0.05,title=`Impulzní charakteristika`,labelfont=[HELVETICA,8],axesfont=[HELVETICA,8],labelfont=[HELVETICA,8],axesfont=[HELVETICA,8],thickness=3);

[Maple Math]

[Maple Math]

[Maple Math]

[Maple Math]

[Maple Plot]

Námět ke zpracování: Realizujte jednotlivé případy realizovat (početně) sériovým rezonančním obvodem RLC podle výše uvedeného obrázku.

5. Posledním, i když teoretickým případem je případ komplexně sdružených kořenů s kladnou reálnou částí. V tomto případě nejde o stabilní systém, tudíž už nehovoříme o činiteli jakosti. Pro námi zvolené hodnoty kořenů dostaneme:

> Re_pt:=evalc(Re(subs({K=1000^2,p1=100+I*980,p2=100-I*980,p=sigma+I*omega},pt)));
plot(subs({K=1000^2,p1=100+I*980,p2=100-I*980,p=sigma+I*omega},pt),t=0..0.05,title=`Impulzní charakteristika`,labelfont=[HELVETICA,8],axesfont=[HELVETICA,8],thickness=3);

[Maple Math]

[Maple Plot]

Systém s takovouto odezvou (jdoucí nade všechny meze) nelze, jak již bylo řečeno, v praxi realizovat. Je nutné poznamenat, že nelze realizovat ani "čistý" systém s ryze imaginárními kořeny, protože nelze v praxi tuto podmínku u "lineárních" systémů udržet vlivem fluktuace parametrů součástek. Proto je nutné tuto podmínku pro oscilující systémy zajistit, nejčastěji pomocí nelineární zpětné vazby (stabilizace amlitudy). Výstupní signál je potom "téměř" harmonický (s malým zkreslením). Bez této zpětné vazby by se systém ustálil vlivem vlastní nelilearity, např. vlivem konečného napájecího napětí, a tvar kmitů by byl silně neharmonický (relaxační kmity).